VEGF protein associates to neurons in remote regions following cortical infarct.
نویسندگان
چکیده
Vascular endothelial growth factor (VEGF) is thought to contribute to both neuroprotection and angiogenesis after stroke. While increased expression of VEGF has been demonstrated in animal models after experimental ischemia, these studies have focused almost exclusively on the infarct and peri-infarct regions. The present study investigated the association of VEGF to neurons in remote cortical areas at three days after an infarct in primary motor cortex (M1). Although these remote areas are outside of the direct influence of the ischemic injury, remote plasticity has been implicated in recovery of function. For this study, intracortical microstimulation techniques identified primary and premotor cortical areas in a non-human primate. A focal ischemic infarct was induced in the M1 hand representation, and neurons and VEGF protein were identified using immunohistochemical procedures. Stereological techniques quantitatively assessed neuronal-VEGF association in the infarct and peri-infarct regions, M1 hindlimb, M1 orofacial, and ventral premotor hand representations, as well as non-motor control regions. The results indicate that VEGF protein significantly increased association to neurons in specific remote cortical areas outside of the infarct and peri-infarct regions. The increased association of VEGF to neurons was restricted to cortical areas that are functionally and/or behaviorally related to the area of infarct. There was no significant increase in M1 orofacial region or in non-motor control regions. We hypothesize that enhancement of neuronal VEGF in these functionally related remote cortical areas may be involved in recovery of function after stroke, through either neuroprotection or the induction of remote angiogenesis.
منابع مشابه
Neuroprotective effects of crocin on the histopathological alterations following brain ischemia-reperfusion injury in rat
Objective(s): Some histopathological alterations take place in the ischemic regions following brain ischemia. Recent studies have demonstrated some neuroprotective roles of crocin in different models of experimental cerebral ischemia. Here, we investigated the probable neuroprotective effects of crocin on the brain infarction and histopathological changes after transient model of focal cerebral...
متن کاملThe Neuroprotective Effects of Long-Term Repetitive Transcranial Magnetic Stimulation on the Cortical Spreading Depression-induced Damages in Rat’s Brain
Introduction: Cortical Spreading Depression (CSD) is a propagating wave of neural and glial cell depolarization with important role in several clinical disorders. Repetitive Transcranial Magnetic Stimulation (rTMS) is a potential tool with preventive treatment effects in psychiatric and neuronal disorders. In this paper, we study the effects of rTMS on CSD by using behavioral and histological a...
متن کاملEffect of Protein Malnutrition on Efferent Projections of Amygdala to the Hippocampus
ABSTRACTIntroduction: Previous investigations have shown that protein malnutrition can alters the structure and function of some areas of hippocampal formation. We investigated the effect of protein malnutrition on amygdaloid projections to the CA1 hippocampal area. In this study we investigated level and pattern of distribution of efferent projections from amygdala to hippocampus in the rat by...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 27 1 شماره
صفحات -
تاریخ انتشار 2007